	Team SHARP
	10

[image: image7.wmf]LoginServlet

CreateUserServlet

commitToDatabase

()

requestFromDatabase

()

DocumentManager

DocumentServlet

UserManager

ManualNotificationServlet

MailManager

ReviewServlet

Decider

PasswordReset

Servlet

Client

Server

Newsletter Content Management & Generation System-II
Software Architecture Documentation
Team SHARP
May 10, 2009
Table of Contents
1Newsletter Content Management & Generation System-II

31 Introduction

32 Background

43 Functional Requirements

44 Quality Attributes

44.1 Performance

44.2 Usability

54.3 Security

54.4 Modifiability

64.5 Availability

65 Patterns and Tactics

65.1 Architectural Drivers

65.1.1 Security-driven System

65.1.2 Event-driven System

75.2 Architectural Patterns

75.2.1 Model-View-Controller

75.2.2 Pipe And Filter

75.2.3 Event-driven

75.3 Tactics

85.3.1 Performance

85.3.1.1 Increase Available Resources

85.3.2 Usability

85.3.2.1 Separate User Interface

85.3.2.2 Model of Key Tasks

85.3.3 Security

85.3.3.1 Authentication

85.3.3.2 Authorization

85.3.3.3 Audit Trail

95.3.4 Modifiability

95.3.4.1 Semantic Coherence

95.3.4.2 Information Hiding

95.3.4.3 Configuration Files

95.3.4.4 Polymorphism

95.3.5 Availability

95.3.5.1 Exceptions

95.3.5.2 Transactions

106 Views

116.1 Logical View

156.2 Process View

176.3 Physical View:

186.4 Development View

216.5 Scenarios

217 Acknowledgements

218 References

219 Appendices

219.1 Acronyms

219.2 Terms

1 Introduction

This document outlines the architecture for an automated newsletter generation and content management web application that will be used for the assembly of the ACM SIGSOFT Newsletter called Software Engineering Notes (SEN). The architecture consists of a 4+1 view model, which defines four views: Logical, Development, Process and Physical. A fifth view is comprised of use cases that show sequences of interactions between objects and processes. The document would be useful for several different types of stakeholders. Developers should focus on the Development and Process views and would use this document to understand the workings of the system and to begin detailed design. Customers should focus on the Logical view and the use cases that make up the +1 of the view model in order to understand the functionality the system will provide as well as the interactions that the system outlines. Any stakeholder interested in understanding how the hardware and software interface with one another to make the workings of the system possible should focus on the Physical view.
2 Background
ACM SIGSOFT publishes a bi-monthly hybrid Newsletter called Software Engineering Notes (SEN). The Newsletter is manually assembled by the editor, who receives various contributions from established column editors and other contributors who submit documents in various forms and formats as part of a document workflow. The print copy is a single pdf file. The digital copy is rendered from the single pdf file and enhanced with additional pdf files, after the necessary metadata is manually extracted. In addition, a table of contents is manually created for each issue. Last year a team of RIT students named Team SEND created a partial solution for alleviating some of the manual portions of newsletter creation. Their efforts resulted in a basic content submission capability but the composition capability was never completed.

The system has two main components: submission and composition. Team SHARP will focus on the composition component while modifying the existing submission component to be more robust. The submission component will need to be re-evaluated and re-engineered for improvements which include usability and modification to ensure a more seamless workflow between the submission and composition components.

The parts to be developed as new functionality and part of the composition component will be the automatic composition of the table of contents, table of papers, table of reports and table of abstracts. The application will allow users of the system to submit content such as column articles, letters to the editor, and other such content. This content will be accompanied by metadata, which will be necessary to automate the construction of the newsletter. Once composed, these tables will be combined into a printable document for construction of the newsletter.

3 Functional Requirements

See the Software Requirements Specification document “ACM SRS”
4 Quality Attributes
4.1 Performance
Since this is a web application, performance for this system deals a lot with the overall user experience when navigating through the different pages of the system, as well as performing operations within the system in order to achieve results towards the end-goal of generating the newsletter.
 Source: End User

 Stimulus: Timing, Response
 Artifact: System services

 Environment: Normal Mode

 Response: Stay in Normal Mode

 Measure: Latency, throughput, data loss

4.2 Usability

It is very important to create a positively perceived solution for the user that is easy to learn and operate when it comes to using the system. Using the system should be largely intuitive and completing a task should be performed in a minimal amount of steps, providing helpful feedback when a task has either been completed or when a problem with a task has arisen. This also includes clear instructions for installation of the system by deployment using an application server.
 Source: End User

 Stimulus: Wants to learn system features

 Artifact: System

 Environment: At run-time

 Response: interface is usable

 Measure: user satisfaction
4.3 Security

This system will be deployed in a production environment, which will in turn leave it vulnerable to attacks from various sources across the internet. To remedy this situation, registration will be required by all users and well-known techniques such as a captcha will be used to deter bots and scripts from registering accounts. Authorization and authentication will be used to deter attacks on the system. All passwords will be encrypted by the system and there will be minimal use of storing data in the session (none of which will encompass passwords) in order to guarantee the safety of users that are logged into the system from having their sensitive information stolen. In addition, administrative users will have the capability to modify/delete existing users.
 Source: Unauthorized user

 Stimulus: Tries to steal sensitive information

 Artifact: System Session, Database
 Environment: At run-time

 Response: Sensitive user information is encrypted, Text fields limited

 Measure: Unauthorized user is unable to extract information from session and/or

 database
4.4 Modifiability

The final quality focus of the system is Modifiability. The original production of this product is on a short timeline, which could lead to reduced scope or a disallowance of additional requested features from the stakeholder. In addition to this, additional components may be desired in the future to further automate the generation of the SIGSOFT newsletter. To address this issue, the system must be divided into self-sustaining modules that serve to accomplish different types of functionality. Although there will undoubtedly be some interconnect between these modules to ensure the workings of the system, parts of the system will be developed to ensure the maximum ability to “hot-swap” different components if deemed necessary in the future.
 Source: Developer

 Stimulus: Wishes to add a component

 Artifact: System
 Environment: Design time

 Response: makes modification without affecting other functionality, deploys

 modification
 Measure: Minimal time required to plug in the component
4.5 Availability

It is necessary for the system to be available on a regular basis and to only have short scheduled downtimes so that submitters can upload documents at their own leisure and editors can edit content within the newsletter whenever they deem necessary. If the system does go down at any point in time or experiences an error from which it cannot recover during a particular task, the system should offer an alternate course of action for the user and give the user a helpful error message so that they can make an informed decision.
 Source: End User
 Stimulus: Avoid faults, recover in case of a fault

 Artifact: System
 Environment: At run-time

 Response: System stays in normal mode, in case of fault, system recovers gracefully

 Measure: MTBF

5 Patterns and Tactics
5.1 Architectural Drivers
5.1.1 Security-driven System

Security is a driving force for this system as it is necessary to protect both users and the system itself. It is important that the user’s information remain confidential both for their protection and to prevent hostile users from acting as someone they are not. The system must track all changes both for legal reasons and to assist administrators in the case of a user error or security breach via nonrepudiation. In order to protect certain critical functionality, the system must be able to determine what level of user is attempting to access the system and provide the user with only the appropriate functionality.
5.1.2 Event-driven System

Events are essential to the success of this workflow system as they are the trigger for notifications and hence the way the system communicates with its users. Events must trigger notifications in response to certain times and dates passing, certain user actions, and certain administrator actions. The notifications triggered by these events must be customizable by the administrator.
5.2 Architectural Patterns
5.2.1 Model-View-Controller

The model-view-controller architectural pattern will be used to provide a separation of concerns between the three major parts of the system: the user-interface, the business logic, and the data itself. The user-interface will act as the view and accept user input. These inputs will then be handled by servlets which act as the controller and communicate with the application layer, which acts as the system’s model. The user-interface will also use the model indirectly through the controller to customize itself when necessary.

Using the model-view-controller pattern will allow most of the development of the three major parts separately. It will reduce the impact of changes and help with integration.
5.2.2 Pipe And Filter

The pipe and filter architectural pattern will provide a method for separating the task of generating a table of papers and table of abstracts into separate steps. This allows each step of table generation to be developed separately and then integrated at the end as a sequence of steps resulting in the generation of a table. Following this pattern also improves maintainability and testability, as maintenance and testing can be performed on each step individually. This ensures each step works properly before it is integrated with the other steps.
5.2.3 Event-driven

The event-driven architectural pattern will be used to provide notifications to one or more relevant users should new users register with the system, a user uploads a document, an administrator approves or rejects a document, or an issue’s due date is near. Administrators will also have the power to send custom notifications through the user-interface at any time should they desire to do so. Notifications will be triggered either in response to some action or in response to the real world’s time and date passing the time and date specified on a notification. Therefore, events are triggered by either a user or a timer which are then processed by the system resulting in a notification being created and then sent out to one or more users via email.
5.3 Tactics
5.3.1 Performance
5.3.1.1 Increase Available Resources

The number of users accessing and using the system even during peak times is not expected to be high enough to cause the system to slow significantly. However, in order to ensure the best possible performance the system could be installed onto a hosting service with high performance hardware, a fast network and a dedicated server.
5.3.2 Usability
5.3.2.1 Separate User Interface

It is important that the system’s user-interface be clean, responsive, and well-organized. In order to facilitate this, the user-interface part of the system will be developed separately from the functional part. Doing so provides a separation of concerns between the user-interface and the functionality behind it, resulting in a better user-interface that is built-up properly rather than forced to adjust to changing code.
5.3.2.2 Model of Key Tasks

A model of key tasks will be kept so that the user can be provided with immediate, helpful feedback. This will improve the user’s experience by pointing out problems before data submission (when possible) rather them having them re-enter information after a failed submission or waiting for the page to load in order to point out errors.
5.3.3 Security
5.3.3.1 Authentication

Users will be required to authenticate themselves with the system in order to access private functionality and data. This ensures only users with the proper credentials can use the system.
5.3.3.2 Authorization

Users will be authorized when access to the system is granted to ensure they are provided with only the data and functionality they have permission to use. This ensures only trusted users use the most critical functionality.
5.3.3.3 Audit Trail

A record of all transactions that occur within the system will be kept. This provides a method of non-repudiation and ensures in the case of a security breach or user error that any changes can be viewed and potentially reversed if necessary.
5.3.4 Modifiability

5.3.4.1 Semantic Coherence

Dedicated modules will be responsible for key functionality (e.g. a notification module for notifications) rather than spreading functionality around different modules that rely on one another. This will reduce coupling, promote re-use, and make change easier should it be necessary later on.
5.3.4.2 Information Hiding

Information for each entity within the system will be kept hidden inside its module when possible. This will isolate concerns within the system by making sure the data flow stays within specific modules that it is associated with.
5.3.4.3 Configuration Files

For future versions of the software, configuration files should be used to set startup parameters. This will allow certain parameters to be changed without any changes to the source code. This will make it easier to configure the system for a certain hardware setup or change the system’s settings later.
5.3.4.4 Polymorphism

When possible, polymorphism will be used so that method calls can be generalized to a type and bound late. This will make future changes easier and promote re-use.
5.3.5 Availability
5.3.5.1 Exceptions

Exceptions will be used to ensure that the most common and expected causes of faults are accounted for and are handled gracefully, providing the user with information about what went wrong and advice on how to correct or avoid the issue.
5.3.5.2 Transactions

Any action on the data that requires several sequential steps will have these steps bundled together and then executed as one large step. This will ensure that data is protected by making certain failures do not occur during a time when the system is executing multiple steps on the data (since the system will not attempt to do so). In addition, this will prevent collisions among multiple threads (e.g. users) accessing and/or changing the data, ensuring the data’s integrity.
6 Views

6.1 Logical View

1. Diagram
[image: image2.emf]equals(Object o)

equals(User u)

-username

-password

-affiliation

-isAdmin

User

establishConnection()

closeConnection()

DBConnection

#processRequest()

LoginServlet

#processRequest()

CreateUserServlet

commitToDatabase()

getAllDocuments()

getUserDocuments()

getUserDocument()

getDocsForIssueVolume()

updateOldDoc()

deleteDocument()

DocumentManager

#processRequest()

DocumentServlet

updateUser()

createUser()

authenticate()

resetUserPwd()

getUser()

deleteUser()

UserManager

#processRequest()

ManualNotificationServlet

parseDocument()

-submitter

-filename

-filepath

-docID

Document

create()

get()

update()

delete()

Abstract Manager

sendEMail()

loadMailerSettings()

saveMailerSettings

insertDefaultSettings()

MailManager

#processRequest()

ReviewServlet

accept()

reject()

Decider

#processRequest()

PasswordResetServlet

#procesRequest()

UpdateUserServlet

buildTOP()

buildTOA()

insertIntoCell()

openWriter()

-title : String

-author : String

-tableID : String

-issueNumber : int

-volumeNumber : int

TableGenerator

aggregateTables()

decorateWordFile()

createWordFile()

-TOP : String

-TOA : String

IssueCreator

#processRequest()

GenerationServlet

#processRequest()

ScheduledNotificationServlet

runDailyNotifications()

addNotification()

deleteNotification()

Scheduler

writeToFile()

-enum FileType

FileIO

#processRequest()

DeleteDocumentServlet

#processRequest()

NotificationsSettingsServlet

2. Element catalog

A. Elements

1) CreateUserServlet - A servlet which allows a user to create login credentials

2) PasswordResetServlet - A servlet which allows users to reset a forgotten password

3) LoginServlet - A servlet which allows users to log in and then use the system

4) DocumentServlet - A servlet which allows users to submit a document for review

5) NotificationServlet - A servlet which notifies the admin/reviewer/editor that a document has been submitted for review or other submitter action has occurred

6) ReviewServlet - A servlet which allows an admin/reviewer/editor to review and submit a review on a user submitted document

7) DeleteDocumentServlet - A servlet which deletes a document or retracts a submission

8) NotificationsSettingsServlet - A servlet which allows an administrator to change mail settings sent by the application

9) ScheduledNotificationServlet - A servlet which sends notifications to specified users automatically
10) ManualNotificationServlet - A servlet which sends notifications to specified users on a specified date

11) GenerationServlet - A servlet which is called when a user specifies a volume/issue to be created
12) UserManager - Manager class which handles requests dealing with User objects

13) DocumentManager - Manager class which handles requests dealing with Document objects

14) MailManager - Class which handles email notification of user related events

15) Decider - Class which handles review decisions and the subsequent necessary actions.

16) User - Data class for User Objects

17) Document - Generic class for parsing Documents

18) LatexDocument - Class for parsing Latex Documents

19) PDFDocument - Class for parsing PDF Documents

20) WordDocument - Class for parsing Word Documents

21) TextDocument - Class for parsing Text Documents

22) AbstractManager - Class which handles upper level functions for all Manager classes

23) DBConnection - Class for establishing and closing connections with the database

24) Scheduler - Sends notifications scheduled to be sent out on a specific day

25) IssueCreator - Assembles an entire volume/issue

26) TableGenerator - Creates the tables in an issue

27) FileIO - Generates a file to be given to the user upon generation of an issue

B. Relations

1) AbstractManager holds the generic CRUD operations for communicating with the database, each manager calls AbstractManager’s superclass method for operations of this type.

2) When Reviews are being done, Decider determines what type of message is sent to the submitter in question

3) Different document class types parse the unique portion of the document passed to them. The Document class itself performs operations akin to all document types.
3. Context Diagram

[image: image3.png][y

Client Tier

7

Nop Pages)
f [Serviets | WebTier

POJOs

Business Tier

J

Database
EIS Tier

4. Variability guide

A. The system is built with both maintainability and extensibility in mind so that future modules can be added to the system without disrupting the underlying functionality of the system or having to do extensive rework in order for the models to take advantage of the existing underlying architecture. As this is the case, it is fully expected that future models will be introduced in the future, adding both new elements as well as functionalities.
5. Architecture background

A. The system is built the way it is to maximize extendability for future improvements. This was important as the key stakeholder was concerned about being able to create significant value by the end of the project deadline. Classes that process data are broken into pairs where each pair has a data holder class as well as a manager class that performs the logic associated with the data. The parsing of documents is done in a Template Method pattern, where each document type’s unique parts are parsed by a child class inheriting from the Document class. Each servlet class is paired with a java server page in the web layer and handles one piece of functionality from the web layer that is passed down into the application layer for processing. Any class at the manager level may establish a connection to the database for persistence simply by statically invoking the DBConnection class. Due to all of these reasons, adding new vertical slices of functionality should be simplistic at worst.
6.2 Process View
1. Diagram
[image: image1.png]

2. Element catalog

A. Elements

1) See Logical View Element Catalogue
B. Relations

1) User associated tasks - Since the actions involved with the CreateUserServlet, PasswordResetServlet and LoginServlet each deal with Users, they link to the system through the UserManager.

2) DocumentServlet to DocumentManager - Since the DocumentServlet deals with the submission of Document objects, any actions it entails links with the DocumentManager.

3) NotificationServlet to MailManager - Since notifications deal with sending out email notifications, the actions/events which are initiated in the ManualNotificationServlet need to interface with the MailManager class.
4) ReviewServlet to Decider - ReviewServlet actions deal with the acceptance of Documents which needs the Decider class to negotiate further actions.
3. Variability guide

A. Most variability comes from notifications which need to be sent when events occur that are not directly linked to the NotificationServlet. In these cases, there is a link between the server class linked to the client servlet where the event occurred and the Mailer class. An example of this would be a password reset. While the PasswordResetServlet links to the UserManager class since User information must be updated, the UserManager also had a link to the Mailer class so that an email can be sent with the new password to the proper user.

4. Architecture Background
A. As with most Information Systems, the Client Server pattern is used here due to the system running on one computer while many different people need to be able to access it from their own machines. The web based user interface allows for this, but this interface needs to be able to access proper information and perform necessary tasks. The Client Server pattern is an obvious choice for dealing with this issue as the pattern exists for this reason. The system’s application functionality runs on its own thread. Users log in with sessions storing their information, limiting their possible tasks based on user type. The users actions interact with the system, but neither the web based portions nor the application layer portions depend on the other to work.
6.3 Physical View:
1. Diagram

[image: image4.emf]Client Workstation

Web Browser

Application Server

Database Server

MySQL Database

Web Layer

Persistance Layer

Application Layer

HTTP Connection

Local Socket

Log File

2. Elements:
A. Client Workstation - This element is where all user interaction with the system is handled and delegated to the different areas of the system.

B. Application Server – Container in which the system can execute and process information.
C. Database Server – Storage facility for user data, documents and authentication.
3. Relations:

A. Web Browser – Software used to interpret the code written in the Web Layer.
B. Web Layer – Communicates with the Application Layer in order to refresh static pages with content based on user inputs.
C. Application Layer – Layer that holds plain old java objects (POJO’s) which take actions passed from the Web Layer and perform processing, doing logic or asking for data retrieval from the database.
D. Persistence Layer – Directly interfaces with the database and the Application Layer in order to pull data or push data back up to the Web Layer.
E. Log File – Logs events that transpire within the system, updated by the Application Layer whenever an event occurs.
F. MySQL Database – Database that houses tables for storing values that need to be retrieved.
3.
Variability Guide:
A. This setup is specifically chosen for the current project, but could be modified in numerous ways. The database need not be MySQL, it could be switched out for various other databases such as Oracle, PostgreSQL, or MS SQL Server. The web browser itself could be any number of browsers currently on the market today. We will specifically be supporting Firefox and IE 7 based on stakeholder requirements. The application server used on this project is Tomcat 6, but that could also be traded for other application servers, such as BEA’s WebLogic, SUN’s Glassfish, or IBM’s Websphere.
5.
Architecture Background:
A. This was the architecture chosen due to the fact that the system required a three-tiered system like most typical enterprise web applications. The three layers that this system is using are a Web Layer, an Application Layer, and a Persistence Layer. The client is interacting through different servlets based on the action needed to be performed in the web layer. These servlets invoke managers in the Application layer which will modify, create, and interact with possible actions the user has invoked. Once the actions have been processed and data is required to go into the database the Application layer creates SQL commands, where data is sent to the database for storage.
6.4 Development View
1. Diagram

[image: image5.emf]Data

Database

Document Package

Managers

Servlets

Notification

Abstract

Manager

Concrete

parseDocument()

Document

parseDocument()

DocumentFormat

2. Element catalog

A. Elements:
1) Servlets – This package contains the main processing elements of the system. The servlets take input actions from the web layer and respond to them appropriately.
2) Notification – This package allows the servlets to execute notification commands. These notifications emails which are used for communicating important information between users.
3) Managers – This package contains managers for every data object. Each manager is responsible for communicating with the database in order to obtain or update any necessary information for its corresponding data object.
4) Data – This package contains every data object. These data objects are persisted in the database via the manager the object.
5) Database – This package contains classes which access and interact with the database backend as well as provide support by providing convenience SQL methods.
B. Relations
1) Managers – The managers are the source of interaction between the data and the database. Instead of a data object querying the database directly, its manager provides a separate level of functionality for those operations. This way data objects never need to worry about interaction with the database and can be built to focus on providing robust persistence.

2) Notification- This will be used by a variety of the servlets for the purpose of sending email messages. Whenever a user would like to send a notification to another user, or if a scheduled notification needs to occur, this package will be responsible for their distribution.
3) Database- Only classes in the manager package should need to directly interact with the database. The database package will be assisting the manager classes in query formation. SQLWizard will provide methods to create queries instead. This will free the manager classes from having to maintain hard-coded SQL statements within their code.
3. Variability guide

The major points of variability lie in the addition of packages. In future releases, more packages will need to be added which will facilitate automated document generation. Some of this generation functionality will have to be part of the document package, but the automation itself may be a separate package. As more planning is completed for future releases, the package structure will become clearer.
4. Architecture background
These packages are chosen in order to increase readability of the code by creating organized logical modules. This package structure supports our three tiered architecture, it provides a clear separation between application, web, and data functionality. It also eases development of future components by capturing as much reusable information as possible in abstract classes.
6.5 Scenarios

See the Software Requirements Specification document “ACM SRS”

7 Acknowledgements

Team SHARP would like to thank Dr. Will Tracz; our distinguished customer, for providing us with an understanding of the needs of the system. Also thanks to Professor Raghu Reddy for providing the template of this document.

8 References
[1] Bass et al., Software Architecture in Practice, 2nd edition, Boston, MA: Addison-Wesley, 2003.

9 Appendices

9.1 Acronyms
9.2 Terms
Captcha: A type of challenge-response test used in computing to ensure that the response is not generated by a computer.

CRUD: Create, Read, Update, Delete. Basic operations used for manipulating data within a system.

POJO: Plain Old Java Object. Used to denominate typical java objects in the application layer as opposed to other objects common in Enterprise Information Systems such as Enterprise Java Beans (EJBs).
� EMBED Visio.Drawing.11 ���

[image: image6.wmf]LoginServlet

CreateUserServlet

commitToDatabase

()

requestFromDatabase

()

DocumentManager

DocumentServlet

UserManager

ManualNotificationServlet

MailManager

ReviewServlet

Decider

PasswordReset

Servlet

Client

Server

_1303479283.vsd
Document Package

Managers

Servlets

Notification

Abstract Manager

Concrete

Database

parseDocument()

Document

Data

parseDocument()

DocumentFormat

_1303665940.vsd
equals(Object o)
equals(User u)

-username
-password
-affiliation
-isAdmin

User

establishConnection()
closeConnection()

DBConnection

#processRequest()

LoginServlet

#processRequest()

CreateUserServlet

commitToDatabase()
getAllDocuments()
getUserDocuments()
getUserDocument()
getDocsForIssueVolume()
updateOldDoc()
deleteDocument()

DocumentManager

#processRequest()

DocumentServlet

updateUser()
createUser()
authenticate()
resetUserPwd()
getUser()
deleteUser()

UserManager

create()
get()
update()
delete()

#processRequest()

ManualNotificationServlet

parseDocument()

-submitter
-filename
-filepath
-docID

Document

Abstract Manager

sendEMail()
loadMailerSettings()
saveMailerSettings
insertDefaultSettings()

MailManager

#processRequest()

ReviewServlet

accept()
reject()

Decider

#processRequest()

PasswordResetServlet

#processRequest()

DeleteDocumentServlet

#procesRequest()

UpdateUserServlet

#processRequest()

writeToFile()

-enum FileType

FileIO

buildTOP()
buildTOA()
insertIntoCell()
openWriter()

-title : String
-author : String
-tableID : String
-issueNumber : int
-volumeNumber : int

TableGenerator

aggregateTables()
decorateWordFile()
createWordFile()

-TOP : String
-TOA : String

IssueCreator

#processRequest()

GenerationServlet

#processRequest()

ScheduledNotificationServlet

runDailyNotifications()
addNotification()
deleteNotification()

Scheduler

NotificationsSettingsServlet

_1303479205.vsd
Client Workstation

Web Browser

Application Server

Database Server

MySQL Database

Web Layer

Persistance Layer

Application Layer

HTTP Connection

Local Socket

Log File

_1303478987.vsd

